🛠️
Bemind
Инструменты оценки
Инструменты оценки
  • Основные показатели стратегии
  • Инструменты оценки модели линейной регрессии
    • 1. Средняя квадратическая ошибка
    • 2. Средняя абсолютная ошибка
    • 3. Корень из средней квадратической ошибки.
    • 4. Коэффициент детерминации
    • 5. Скорректированный коэффициент детерминации:
    • 6. Коэффициенты модели
    • 7. Проверка гипотез о коэффициентах модели
    • 8. Проверка предположений о модели
  • Инструменты оценки качества обучения классифицирующей нейронной сети
    • Точность (Accuracy)
    • Матрица ошибок (Confusion Matrix)
    • Кривая ROC (Receiver Operating Characteristic)
    • Кросс-энтропийная функция потерь (Cross-Entropy Loss)
    • Precision, Recall, F1-score
    • Разделение данных на тренировочный, валидационный и тестовый наборы
    • Мониторинг метрик на валидационном наборе во время обучения для предотвращения переобучения
  • Линейная, логистическая и регрессия Пуассона.
    • Введение в простую линейную регрессию
    • Введение в регрессию Пуассона для подсчета данных
    • Введение в простую линейную регрессию
    • Полное руководство по линейной регрессии в Python
      • Как создать остаточный график в Python
      • Понимание гетероскедастичности в регрессионном анализе
      • Как выполнить тест Дарбина-Ватсона в Python
      • Четыре допущения линейной регрессии
    • Как рассчитать VIF в Python
    • Руководство по мультиколлинеарности и VIF в регрессии
  • Мультиколлинеарность и коэффициент инфляции дисперсии (VIF) в регрессионной модели (с кодом Python)
    • Фактор инфляции дисперсии в Python
  • Функции потерь в Python — простая реализация
  • CADE — интересный способ поиска аномалий в многомерных данных
  • Как использовать Python для проверки нормальности
  • Анализ карты Пуанкаре
    • Анализ Финансовых Рынков: Автокорреляция и Спектральный Анализ Криптовалют
  • Предсказания цен с использованием постоянной Фейгенбаума
  • Расчет вероятности серии убыточных сделок в серии игр.
  • Анализ данных ставок и результатов с использованием Python
Powered by GitBook
On this page
  1. Инструменты оценки модели линейной регрессии

3. Корень из средней квадратической ошибки.

Третьим инструментом, который мы рассмотрим, будет корень из средней квадратической ошибки (Root Mean Squared Error, RMSE). RMSE представляет собой квадратный корень из MSE и измеряет среднеквадратичное отклонение фактических значений от прогнозируемых значений модели.

Диапазон значений RMSE также теоретически может быть от 0 до бесконечности. Как и в случае с MSE и MAE, чем меньше значение RMSE, тем лучше модель.

Пример вызова и получения RMSE на Python может выглядеть так:

from sklearn.metrics import mean_squared_error
import numpy as np

# Предположим, что y_true - это фактические значения, а y_pred - прогнозируемые значения модели
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]

# Вычисляем MSE
mse = mean_squared_error(y_true, y_pred)

# Вычисляем RMSE
rmse = np.sqrt(mse)

print("Root Mean Squared Error (RMSE):", rmse)

Этот код выведет значение RMSE для приведенных фактических и прогнозируемых значений.

Previous2. Средняя абсолютная ошибкаNext4. Коэффициент детерминации

Last updated 1 year ago