🛠️
Bemind
Инструменты оценки
Инструменты оценки
  • Основные показатели стратегии
  • Инструменты оценки модели линейной регрессии
    • 1. Средняя квадратическая ошибка
    • 2. Средняя абсолютная ошибка
    • 3. Корень из средней квадратической ошибки.
    • 4. Коэффициент детерминации
    • 5. Скорректированный коэффициент детерминации:
    • 6. Коэффициенты модели
    • 7. Проверка гипотез о коэффициентах модели
    • 8. Проверка предположений о модели
  • Инструменты оценки качества обучения классифицирующей нейронной сети
    • Точность (Accuracy)
    • Матрица ошибок (Confusion Matrix)
    • Кривая ROC (Receiver Operating Characteristic)
    • Кросс-энтропийная функция потерь (Cross-Entropy Loss)
    • Precision, Recall, F1-score
    • Разделение данных на тренировочный, валидационный и тестовый наборы
    • Мониторинг метрик на валидационном наборе во время обучения для предотвращения переобучения
  • Линейная, логистическая и регрессия Пуассона.
    • Введение в простую линейную регрессию
    • Введение в регрессию Пуассона для подсчета данных
    • Введение в простую линейную регрессию
    • Полное руководство по линейной регрессии в Python
      • Как создать остаточный график в Python
      • Понимание гетероскедастичности в регрессионном анализе
      • Как выполнить тест Дарбина-Ватсона в Python
      • Четыре допущения линейной регрессии
    • Как рассчитать VIF в Python
    • Руководство по мультиколлинеарности и VIF в регрессии
  • Мультиколлинеарность и коэффициент инфляции дисперсии (VIF) в регрессионной модели (с кодом Python)
    • Фактор инфляции дисперсии в Python
  • Функции потерь в Python — простая реализация
  • CADE — интересный способ поиска аномалий в многомерных данных
  • Как использовать Python для проверки нормальности
  • Анализ карты Пуанкаре
    • Анализ Финансовых Рынков: Автокорреляция и Спектральный Анализ Криптовалют
  • Предсказания цен с использованием постоянной Фейгенбаума
  • Расчет вероятности серии убыточных сделок в серии игр.
  • Анализ данных ставок и результатов с использованием Python
Powered by GitBook
On this page
  1. Инструменты оценки модели линейной регрессии

2. Средняя абсолютная ошибка

Вторым инструментом, который мы рассмотрим, будет средняя абсолютная ошибка (Mean Absolute Error, MAE). MAE представляет собой среднее значение абсолютных отклонений фактических значений от прогнозируемых значений модели.

Диапазон значений MAE также теоретически может быть от 0 до бесконечности. Как и в случае с MSE, чем меньше значение MAE, тем лучше модель.

Пример вызова и получения MAE на Python может выглядеть так:

from sklearn.metrics import mean_absolute_error

# Предположим, что y_true - это фактические значения, а y_pred - прогнозируемые значения модели
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]

# Вычисляем MAE
mae = mean_absolute_error(y_true, y_pred)

print("Mean Absolute Error (MAE):", mae)

# Mean Absolute Error (MAE): 0.5

Этот код выведет значение MAE для приведенных фактических и прогнозируемых значений.

Previous1. Средняя квадратическая ошибкаNext3. Корень из средней квадратической ошибки.

Last updated 1 year ago