Bemind
Учебник Python
Учебник Python
  • Python
    • Python Lists
      • Списковые включения в Python (Полное руководство с примерами)
      • Исправление ValueError: Слишком Много Значений Для Распаковки в Python
      • Как добавить словарь в список в Python
      • Как добавить строку в список в Python
      • Разница между массивами и списками в Python
      • Python: Различия между списками и кортежами
      • Как проверить, пуст ли список в Python
      • Как Итерировать (Циклически Проходить) По Списку в Python
      • Python List sort(): Подробное руководство по сортировке списков
      • Python List Extend: Как добавить несколько элементов в список
      • Python: Найти Индекс Всех Вхождений Элемента в Списке
      • Конвертация списка словарей в Pandas DataFrame
      • Генерация случайных чисел в Python
      • Поиск Индекса в Списке Python: Найти Первое, Последнее или Все Вхождения
      • Добавить в начало списка в Python (Вставить в начало)
      • Найти дубликаты в списке Python
      • Python: Умножение Списков (6 Различных Способов)
      • Python списки: Полный обзор
      • Python: Выбор случайного элемента из списка
      • 4 Способа Очистить Список в Python
      • Объяснение ошибки IndexError в Python: индекс списка выходит за пределы допустимого диапазона
      • Python: Получение индекса максимального элемента в списке
      • Python: Объединение списков – Слияние списков (8 способов)
      • Python: Проверка наличия элемента в списке
      • Python: Проверка наличия элемента в списке
      • Удаление элемента из списка в Python (pop, remove, del, clear)
      • Как перевернуть список в Python (6 способов)
      • Python: Замена элемента в списке (6 различных способов)
      • Python: Удаление дубликатов из списка (7 способов)
      • Python: Преобразование словаря в список кортежей (4 простых способа)
      • Python: Перемешать Список (Случайное Распределение Элементов Списка в Python)
      • Python: Пересечение двух списков
      • Python: Вычитание двух списков (4 простых способа!)
      • Длина или Размер Списка в Python: 5 Способов Узнать Длину Списка
      • Python: Транспонирование списка списков (5 простых способов!)
      • Python: Разделение списка (Пополам, на части)
      • Python: Комбинации списка (Получить все комбинации списка)
      • Python: Выравнивание списка списков (4 способа)
      • Разница между списками в Python: Нахождение разницы между двумя списками Python
      • Python: Найти среднее значение списка или списка списков
      • Как добавлять элементы в списки в Python – 4 простых способа!
      • Списковые включения в Python (Полное руководство с примерами)
      • 6 способов преобразовать список Python в строку
    • Python Dictionaries
      • Понимание словаря Python (с примерами)
      • Исправляем ValueError: Слишком Много Значений Для Распаковки в Python
      • Как добавить словарь в список в Python
      • Преобразование JSON в словарь Python
      • Полное руководство по вложенным словарям в Python
      • Копирование словаря в Python: Полное руководство
      • Конвертация списка словарей в Pandas DataFrame
      • Поиск дубликатов в списке Python
      • Полный обзор словарей в Python
      • Python: Добавление пары Ключ:Значение в Словарь
      • Python: Сортировка словаря по значениям
      • Слияние Словарей в Python – Комбинирование Словарей (7 Способов)
      • Python: Удаление Дубликатов из Списка (7 Способов)
      • Python: Преобразование словаря в список кортежей (4 простых способа)
      • Python: Красивая Печать Словаря (Dictionary) – 4 Способа
      • Python: Проверка пуст ли словарь (5 способов!)
      • Copy of Python: Проверка пуст ли словарь (5 способов!)
      • Python: Проверьте, существует ли ключ (или значение) в словаре (5 простых способов)
      • Python: Проверьте, существует ли ключ (или значение) в словаре (5 простых способов)
      • Python: Получение Ключа Словаря с Максимальным Значением (4 Способа)
      • Python: Удаление ключа из словаря (4 разных способа)
      • Как красиво вывести JSON-файл в Python (6 методов)
    • Python Strings
      • Python Капитализация Строк: Руководство по Преобразованию слов в Заглавные
      • Python strip: Как обрезать строку в Python
      • Python Обратная Строка: Руководство по Реверсированию Строк
      • Как Удалить Префикс или Суффикс из Строки в Python
      • Преобразование строки в формат заголовка в Python с помощью str.title()
      • Как добавить строку в список в Python
      • Python String startswith: Проверка, начинается ли строка с подстроки
      • Python String endswith: Проверка того, заканчивается ли строка подстрокой
      • Как удалить первый или последний символ из строки в Python
      • Как исправить: SyntaxError в Python - EOL при сканировании строкового литерала
      • Python String Contains: Проверка Наличия Подстроки в Строке
      • Как проверить, пустая ли строка в Python
      • Python Новая Строка и Как Печатать Без Переноса Строки
      • Как Конкатенировать Строки в Python: Полное Руководство
      • Python: Подсчет слов в строке или файле
      • Как создать список алфавита в Python
      • Python: Конкатенация строки и целого числа (Int)
      • Python: Сортировка строки (4 различных способа)
      • Python zfill и rjust: Добавление нулей в строку в Python
      • Python: Целое в Двоичное (Преобразование целого числа в двоичную строку)
      • Python rfind: Нахождение индекса последней подстроки в строке
      • Python SHA256 хеширование алгоритм: объяснение
      • Python: Усечение числа с плавающей точкой (6 различных способов)
      • Выбор между методами Python isdigit(), isnumeric() и isdecimal()
      • Python: Удаление специальных символов из строки
      • Python Приведение Строки к Нижнему Регистру с помощью .lower(), .casefold(), и .islower()
      • Python программа для проверки, является ли строка палиндромом (6 методов)
      • Python: Найдите все перестановки строки (3 легких способа!)
      • Python: Удаление пунктуации из строки (3 разных способа!)
      • Python: Найти индекс (или все индексы) подстроки в строке
      • Python: Удаление символов новой строки из строки
      • Python: Удаление символа из строки (4 способа)
      • Python: Количество вхождений в строке (4 способа!)
    • Встроенные функции Python
      • abs()
      • ascii()
      • aiter()
      • all()
      • any()
      • anext()
      • bin()
      • bool()
      • breakpoint()
      • bytearray()
      • bytes()
      • callable()
      • chr()
      • classmethod()
      • compile()
      • complex()
      • delattr()
      • dict()
      • dir()
      • divmod()
      • enumerate()
      • eval()
      • exec()
      • filter()
      • float()
      • format()
      • frozenset()
      • getattr()
      • globals()
      • hasattr()
      • hash()
      • help()
      • hex()
      • id()
      • input()
      • int()
      • issubclass()
      • iter()
      • len()
      • list()
      • locals()
      • map()
      • max()
      • memoryview()
      • min()
      • next()
      • object()
      • oct()
      • open()
      • ord()
      • pow()
      • print()
      • property()
      • range()
      • repr()
      • reversed()
      • round()
      • set()
      • setattr()
      • isinstance()
      • slice()
      • zip()
      • type()
      • sorted()
      • staticmethod()
      • str()
      • sum()
      • super()
      • tuple()
      • vars()
      • import()
    • Cобеседования Python. Разбор реальных вопросов.
    • Встроенные методы в Python
  • Учебники по Pandas и Numpy
    • Numpy
      • Функция активации ReLU для глубокого обучения: полное руководство по выпрямленному линейному блоку
      • Как нормализовать массивы NumPy (минимальное-максимальное масштабирование, Z-оценка, L2)
      • NumPy where: Условная обработка элементов массива
      • NumPy linspace: создание равномерно расположенных массивов с помощью np.linspace
      • Как рассчитать векторное произведение в Python
      • Разделение NumPy: Разделение массива NumPy на части
      • NumPy: Лучшие способы применения функции к массиву
      • NumPy full: Создание массивов с заданным значением
      • NumPy clip(): Ограничьте значения массива минимальным и максимальным значениями
      • NumPy cumsum: Расчет кумулятивных сумм массивов NumPy
      • Изучаем функцию np.histogram в NumPy: создаем гистограмму
      • NumPy arange(): Полное руководство (с примерами)
      • Руководство по индексации и срезам массивов NumPy: Полное руководство
      • NumPy argmin(): Получение индекса минимального значения в массивах
      • Выравнивание массива с помощью NumPy flatten
      • Объединение массивов NumPy по различным осям с использованием функции stack
      • Удаление размерности из массивов NumPy с помощью NumPy Squeeze
      • Функция np.repeat() NumPy: Повторение массивов NumPy
      • Использование функции NumPy.exp() для вычисления экспоненты
      • Реализация функции сигмоида на Python
      • NumPy Pad: Использование np.pad() для дополнения массивов и матриц
      • np.argmax(): Как использовать NumPy Argmax
      • NumPy logspace: Понимание функции np.logspace()
      • Использование NumPy Tile для Расположения Массивов
      • NumPy Zeros: Создание массивов и матриц с нулями в NumPy
      • Использование числа Пи в Python (NumPy и Math)
      • Распределение Нормального (Гауссова) Распределения в Numpy (Случайное Нормальное в Numpy)
      • NumPy для Data Science на Python
      • Расчет скалярного произведения с использованием Numpy в Python
      • Расчет натурального логарифма на Python
    • Pandas
      • Python сводные таблицы – Полное руководство
      • Изучение API стиля Pandas
      • Объяснение группировки по нескольким столбцам в Pandas с примерами
      • Удаление индексной колонки DataFrame в Pandas: Руководство с примерами
      • Pandas Quantile: Расчет процентилей в DataFrame
      • Как рассчитать скользящее среднее (среднее арифметическое) в Pandas
      • Руководство по использованию метода fillna в Pandas для работы с отсутствующими данными в DataFrame
      • Pandas unique(): Получение уникальных значений в DataFrame
      • Распакуйте Ваши Данные с Помощью Функции Melt в Pandas
      • Pandas date_range: Как Создать Диапазон Дат в Pandas
      • Сброс индекса в Pandas: как сбросить индекс в Pandas
      • Pandas replace() – Замена значений в DataFrame Pandas
      • Перемещение столбца DataFrame Pandas на позицию (В начало и в конец)
      • Учебное пособие по Python Pandas: полное руководство
      • Pandas: Замена NaN на нули
      • Преобразование DataFrame Pandas в файл Pickle
      • Конвертация Pandas DataFrame в JSON
      • Преобразование DataFrame Pandas в Словарь
      • Преобразование Pandas DataFrame в Список
      • Чтение файлов Parquet в Pandas с помощью pd.read_parquet
      • Pandas dropna(): Удаление отсутствующих записей и столбцов в DataFrame
      • Как Добавить Новый Столбец в DataFrame Pandas
      • Подсчёт уникальных значений в Pandas
      • Отображение всех столбцов и строк в DataFrame Pandas
      • Pandas to_excel: Запись DataFrames в файлы Excel
      • Как использовать Pandas для чтения файлов Excel в Python
      • Преобразование списка словарей в Pandas DataFrame
      • Как добавить/вставить строку в DataFrame Pandas
      • Диаграмма рассеяния в Pandas: Как создать диаграмму рассеяния в Pandas
      • Pandas to_datetime: Преобразование строки Pandas в дату и время
      • Введение в Pandas для Data Science
      • Индексация, Выборка и Присваивание Данных в Pandas
      • Суммирование и Анализ Pandas DataFrame
      • Преобразование столбцов Pandas с помощью map и apply
      • Группировка данных в Pandas с использованием cut и qcut
      • Дата и время в Pandas и Python
      • Очистка и подготовка данных в Pandas и Python
      • Pandas GroupBy: группировка, суммирование и агрегация данных в Python
      • Pandas Дата и Время в Части Даты (месяц, год и т.д.)
      • Pandas: Получение номера строки из DataFrame
      • Вычисление Взвешенного Среднего в Pandas и Python
      • Как перемешать строки Pandas Dataframe в Python
      • Pandas: количество столбцов (подсчет столбцов в DataFrame)
      • Pandas Sum: сложение столбцов и строк DataFrame
      • Pandas Diff: Вычисление Разницы Между Строками Pandas
      • Нормализация столбца или датафрейма Pandas (с использованием Pandas или sklearn)
      • Функция Rank в Pandas: Ранжирование данных в Dataframe (Эквивалент SQL row_number)
      • Pandas Describe: Описательная статистика вашего Dataframe
      • Pandas Shift: Перемещение столбца DataFrame вверх или вниз
      • 7 Способов Выполнения Выборки Данных в Pandas
      • Экспорт DataFrame Pandas в CSV файл – Использование .to_csv()
      • Pandas: Итерация по строкам DataFrame в Pandas
      • Pandas: Преобразование значений столбца в строки
      • Дисперсия в Pandas: Вычисление дисперсии столбца в Pandas Dataframe
      • Pandas: Создание DataFrame из списков (5 способов!)
      • Pandas Rename Index: Как переименовать индекс DataFrame в Pandas
      • Pandas: Подсчёт уникальных значений в объекте GroupBy
      • Pandas: Добавить дни к колонке с датами
      • Среднее в Pandas: Как рассчитать среднее для одной или нескольких колонок
      • Pandas Column to List – Конвертируйте колонку Pandas в список
      • Транспонирование Dataframe в Pandas
      • Python: Разделение DataFrame Pandas
      • Как получить имена столбцов в DataFrame Pandas
      • Pandas: Количество строк в DataFrame (6 способов)
      • Создание пустого DataFrame Pandas и добавление данных
      • Как переименовать столбцы в Pandas DataFrame (с примерами)
      • Изменение порядка столбцов в Pandas: использование метода reindex и метода insert
      • Pandas get_dummies (One-Hot кодирование), объяснение
      • Относительные и Абсолютные Частоты в Python и Pandas
      • Финансовый год – Определение финансового года в Pandas
      • Как сортировать данные в DataFrame Pandas
  • Учебники Matplotlib и Seaborn
    • Seaborn
      • Регрессионные графики в Seaborn с использованием regplot и lmplot
      • Seaborn residplot – Построение остатков линейной регрессии
      • Seaborn jointplot() – Создание совместных графиков в Seaborn
      • Seaborn displot – Распределенческие графики в Python
      • Seaborn ecdfplot – Эмпирические функции накопленного распределения
      • Seaborn rugplot – Визуализация маргинальных распределений
      • Seaborn kdeplot – Создание графиков оценки плотности ядра
      • Seaborn histplot – Создание Гистограмм в Seaborn
      • Seaborn catplot – Визуализация категориальных данных в Python
      • Средняя тенденция для категориальных данных в Seaborn Pointplot
      • Seaborn stripplot: Jitter Plots для распределений категориальных данных
      • Seaborn Countplot – Подсчет категориальных данных в Python
      • Seaborn swarmplot: Bee Swarm Plots для распределения категориальных данных
      • Скрипичные графики Seaborn в Python: Полное руководство
      • Настройка расположения легенд Seaborn, меток, текста и т.д.
      • Тепловая карта Seaborn: Полное руководство
      • Создание многосекционных сеток в Seaborn с помощью FacetGrid
      • Удаление рамки в Seaborn: Как работать с рамкой
      • Заголовки и метки осей в Seaborn: добавление и настройка
      • Как установить Seaborn в Python (Исправление: no module named seaborn)
      • Seaborn relplot – Создание точечных и линейных графиков
      • Полное руководство по созданию точечных диаграмм (scatter plots) в Python с использованием Seaborn
    • Matplotlib
      • Режим Retina в Matplotlib: Улучшение Качества Графиков
      • Как построить функцию в Python с использованием Matplotlib
      • Как создать 3D-диаграммы рассеяния в Matplotlib
      • Как изменить размер шрифта в графике Matplotlib
      • Установка размера маркера в точечных диаграммах Matplotlib
      • Как изменить размер графика и фигуры в Matplotlib
      • Как добавить названия в Matplotlib: Заголовок, Подзаголовок, Названия Осей
      • Pandas Scatter Plot: Как создать диаграмму рассеяния в Pandas
      • Построение графиков в Python с помощью Matplotlib
      • Диаграммы рассеяния Matplotlib – Все, что вам нужно знать
      • Диаграммы с столбцами в Matplotlib – Узнайте все, что вам нужно знать
      • Линейные диаграммы Matplotlib – Всё, что вам нужно знать
      • Построение гистограммы в Python с Matplotlib и Pandas
  • Алгоритмы
    • Алгоритм поиска в ширину (BFS) в Python
    • Алгоритм поиска в глубину (DFS) на Python
  • AI создает хедж-фонд для анализа акций на Python
Powered by GitBook
On this page
  • Краткое изложение методов
  • Преобразование списка словарей в фрейм данных Pandas
  • Работа с отсутствующими ключами при преобразовании списка словарей в таблицу данных Pandas
  • Чтение только некоторых столбцов при преобразовании списка словарей в таблицу данных Pandas
  • Установка индекса при преобразовании списка словарей в таблицу данных Pandas
  • json_normalize: чтение вложенных словарей в таблицу данных Pandas
  • Заключение
  • Дополнительные ресурсы
  1. Python
  2. Python Lists

Конвертация списка словарей в Pandas DataFrame

PreviousPython: Найти Индекс Всех Вхождений Элемента в СпискеNextГенерация случайных чисел в Python

Last updated 1 year ago

В этом учебнике вы научитесь преобразовывать список словарей Python в DataFrame Pandas. Pandas предлагает несколько способов преобразования словарей в DataFrame. Вы узнаете, как использовать метод from_dict Pandas, конструктор DataFrame и функцию

К концу этого урока вы узнаете:

  • Как преобразовать список словарей в DataFrame Pandas

  • Как работать с разными наборами столбцов в словарях

  • Как установить индекс при преобразовании списка словарей в DataFrame

  • Как преобразовать вложенные словари в DataFrame Pandas

Оглавление

Краткое изложение методов

В таблице ниже приводятся различные способы чтения списка словарей в DataFrame Pandas. Каждый из этих методов рассмотрен детально в течение учебного пособия:

Имя метода
Работает с отсутствующими ключами
Читать только некоторые столбцы
Установить индекс
Чтение вложенных словарей

DataFrame()

Да

Да

Да

Нет

from_dict()

Да

Да

Только используя.set_index()

Нет

from_records()

Да

Да

Да

Нет

json_normalize()

Да

Да

Да

Да

В этом разделе вы узнаете, как преобразовать список словарей в объект DataFrame с использованием класса DataFrame в Pandas. Передав список словарей, вы легко можете создать DataFrame.

Преобразование списка словарей в фрейм данных Pandas

В каждом словаре содержится запись в DataFrame, при этом ключи становятся столбцами. Давайте рассмотрим пример, где каждый словарь содержит все ключи:

# Преобразование списка словарей в DataFrame
import pandas as pd

list_of_dicts = [
{'Имя': 'Ник', 'Возраст': 33, 'Местоположение': 'Торонто'},
{'Имя': 'Кейт', 'Возраст': 32, 'Местоположение': 'Лондон'},
{'Имя': 'Иван', 'Возраст': 36, 'Местоположение': 'Лондон'}]

df = pd.DataFrame(list_of_dicts)

print(df)

# Возвращает:
#    Имя  Возраст Местоположение
# 0  Ник      33       Торонто
# 1 Кейт      32        Лондон
# 2 Иван      36        Лондон

Поскольку каждый словарь в списке содержит одинаковые ключи, мы можем использовать несколько различных методов для достижения этой цели. Другие следующие методы также будут работать:

# Эти методы все производят один и тот же результат
df = pd.DataFrame(list_of_dicts)
df = pd.DataFrame.from_dict(list_of_dicts)
df = pd.DataFrame.from_records(list_of_dicts)

Работа с отсутствующими ключами при преобразовании списка словарей в таблицу данных Pandas

Давайте теперь рассмотрим более сложный пример. В приведенном ниже примере мы будем использовать словари, один из которых будет отсутствовать ключ. Давайте используем метод .from_dict() для чтения списка, чтобы увидеть, как будут прочитаны данные:

# Чтение словарей с отсутствующими ключами
import pandas as pd

list_of_dicts = [{'Имя': 'Ник', 'Возраст': 33, 'Местоположение': 'Торонто'},
{'Имя': 'Кейт', 'Возраст': 32, 'Местоположение': 'Лондон'},
{'Имя': 'Иван', 'Возраст': 36}]

df = pd.DataFrame.from_dict(list_of_dicts)

print(df)

# Возвращает:
#    Имя  Возраст Местоположение
# 0  Ник      33       Торонто
# 1 Кейт      32        Лондон
# 2 Иван      36           NaN

Этот метод возвращает ту же версию, даже если вы используете конструктор pd.DataFrame(), метод .from_dict() или метод .from_records(). Любой словарь, в котором отсутствует ключ, вернет отсутствующее значение, NaN.

Чтение только некоторых столбцов при преобразовании списка словарей в таблицу данных Pandas

Часто бывают случаи, когда вам необходимо прочитать словари в Pandas DataFrame, но при этом интересуют только некоторые столбцы. В таком случае можно использовать параметр columns=. Обратите внимание, что этот параметр доступен только в конструкторе pd.DataFrame() и методе pd.DataFrame.from_records(). Использование этого параметра в методе pd.DataFrame.from_dict() приведет к возникновению ValueError.

Давайте загрузим тот же список словарей, но прочитаем только два столбца:

# Чтение только подмножества столбцов
import pandas as pd

list_of_dicts = [{'Имя': 'Ник', 'Возраст': 33, 'Местоположение': 'Торонто'},
{'Имя': 'Кейт', 'Возраст': 32, 'Местоположение': 'Лондон'},
{'Имя': 'Иван', 'Возраст': 36}]

df = pd.DataFrame.from_records(list_of_dicts, columns=['Имя', 'Возраст'])
# То же самое: df = pd.DataFrame(list_of_dicts, columns=['Имя', 'Возраст'])

print(df)

# Возвращает:
#    Имя  Возраст
# 0  Ник      33
# 1 Кейт      32
# 2 Иван      36

Установка индекса при преобразовании списка словарей в таблицу данных Pandas

При создании DataFrame вы можете задать два различных типа индексов:

  1. Индекс DataFrame, который не является частью читаемых данных (например, 1, 2, 3), или

  2. Выберите столбец данных в качестве индекса DataFrame.

Давайте рассмотрим первый пример использования. Для этого мы можем полагаться только на конструктор pd.DataFrame() и метод pd.DataFrame.from_records(). Чтобы передать произвольный индекс, мы можем использовать параметр index=, чтобы передать список значений.

Давайте посмотрим, как это делается в Pandas:

# Установка индекса при чтении списка словарей
import pandas as pd

list_of_dicts = [{'Имя': 'Ник', 'Возраст': 33, 'Местоположение': 'Торонто'},
{'Имя': 'Кейт', 'Возраст': 32, 'Местоположение': 'Лондон'},
{'Имя': 'Иван', 'Возраст': 36, 'Местоположение': 'Нью-Йорк'}]

df = pd.DataFrame.from_records(list_of_dicts, index=['Сотрудник_001', 'Сотрудник_002', 'Сотрудник_003'])
# То же самое: df = pd.DataFrame(list_of_dicts, index=['Сотрудник_001', 'Сотрудник_002', 'Сотрудник_003'])

print(df)

# Возвращает:
#                Имя  Возраст Местоположение
# Сотрудник_001  Ник      33       Торонто
# Сотрудник_002 Кейт      32        Лондон
# Сотрудник_003 Иван      36      Нью-Йорк

Чтобы прочитать список словарей и установить индекс на основе одного из ключей, мы можем использовать любой из трех описанных выше методов. Хотя Pandas напрямую не предоставляет параметр для этого, мы можем использовать метод .set_index(), чтобы достичь желаемого.

Давайте прочитаем наши данные и используем столбец 'Name' в качестве индекса:

# Установка столбца в качестве индекса
import pandas as pd

list_of_dicts = [{'Имя': 'Ник', 'Возраст': 33, 'Местоположение': 'Торонто'},
{'Имя': 'Кейт', 'Возраст': 32, 'Местоположение': 'Лондон'},
{'Имя': 'Иван', 'Возраст': 36, 'Местоположение': 'Нью-Йорк'}]

df = pd.DataFrame(list_of_dicts).set_index('Имя')
# То же самое: df = pd.DataFrame.from_dict(list_of_dicts).set_index('Имя')
# То же самое: df = pd.DataFrame.from_records(list_of_dicts).set_index('Имя')

print(df)

# Возвращает:
#       Возраст Местоположение
# Имя                          
# Ник         33       Торонто
# Кейт        32        Лондон
# Иван        36      Нью-Йорк

В заключительном разделе вы узнаете, как использовать функцию json_normalize() для чтения списка вложенных словарей в DataFrame Pandas.

json_normalize: чтение вложенных словарей в таблицу данных Pandas

При загрузке данных из разных источников, таких как веб-API, вам может быть возвращен список вложенных словарей. При чтении этих списков словарей с помощью показанных выше методов вложенные словари просто будут возвращены как словари в столбце.

Однако во многих случаях вы захотите, чтобы каждое из этих полей возвращало свой собственный столбец. Для этого мы можем использовать функцию pd.json_normalize()

Давайте рассмотрим пример, где словари в нашем списке являются вложенными, и используем функцию json_normalize для их преобразования в DataFrame:

# Преобразование списка вложенных словарей в DataFrame
import pandas as pd

list_of_dicts = [
    {'Имя': 'Ник', 'Возраст': 33, 'Местоположение': {'Город': 'Торонто', 'Страна': 'Канада'}},
    {'Имя': 'Кейт', 'Возраст': 32, 'Местоположение': {'Город': 'Лондон', 'Страна': 'Великобритания'}},
    {'Имя': 'Иван', 'Возраст': 36, 'Местоположение': {'Город': 'Нью-Йорк', 'Страна': 'США'}}
]

df = pd.json_normalize(list_of_dicts)

print(df)

# Возвращает:
#    Имя  Возраст Местоположение.Город Местоположение.Страна
# 0  Ник      33              Торонто               Канада
# 1 Кейт      32               Лондон       Великобритания
# 2 Иван      36             Нью-Йорк                  США

Заключение

В этом учебнике вы узнали, как считывать список словарей в DataFrame Pandas. Вы узнали, как использовать четыре разных способа для достижения этого. Также вы научились считывать только подмножество столбцов, обрабатывать отсутствующие данные и как установить индекс. Наконец, вы узнали, как считывать список вложенных словарей в ваш DataFrame Pandas.

Дополнительные ресурсы

Чтобы узнать больше о смежных темах, ознакомьтесь с нижеследующими руководствами:

  • Словари Python: полный обзор

  • Индекс сброса Pandas: как сбросить индекс Pandas

  • Индекс переименования Pandas: как переименовать индекс Dataframe Pandas

Официальная документация Pandas json_normalize
Краткое изложение методов
Преобразование списка словарей в фрейм данных Pandas
Работа с отсутствующими ключами при преобразовании списка словарей в таблицу данных Pandas
Чтение только некоторых столбцов при преобразовании списка словарей в таблицу данных Pandas
Установка индекса при преобразовании списка словарей в таблицу данных Pandas
json_normalize: чтение вложенных словарей в таблицу данных Pandas
Заключение
Дополнительные ресурсы