Bemind
Учебник Python
Учебник Python
  • Python
    • Python Lists
      • Списковые включения в Python (Полное руководство с примерами)
      • Исправление ValueError: Слишком Много Значений Для Распаковки в Python
      • Как добавить словарь в список в Python
      • Как добавить строку в список в Python
      • Разница между массивами и списками в Python
      • Python: Различия между списками и кортежами
      • Как проверить, пуст ли список в Python
      • Как Итерировать (Циклически Проходить) По Списку в Python
      • Python List sort(): Подробное руководство по сортировке списков
      • Python List Extend: Как добавить несколько элементов в список
      • Python: Найти Индекс Всех Вхождений Элемента в Списке
      • Конвертация списка словарей в Pandas DataFrame
      • Генерация случайных чисел в Python
      • Поиск Индекса в Списке Python: Найти Первое, Последнее или Все Вхождения
      • Добавить в начало списка в Python (Вставить в начало)
      • Найти дубликаты в списке Python
      • Python: Умножение Списков (6 Различных Способов)
      • Python списки: Полный обзор
      • Python: Выбор случайного элемента из списка
      • 4 Способа Очистить Список в Python
      • Объяснение ошибки IndexError в Python: индекс списка выходит за пределы допустимого диапазона
      • Python: Получение индекса максимального элемента в списке
      • Python: Объединение списков – Слияние списков (8 способов)
      • Python: Проверка наличия элемента в списке
      • Python: Проверка наличия элемента в списке
      • Удаление элемента из списка в Python (pop, remove, del, clear)
      • Как перевернуть список в Python (6 способов)
      • Python: Замена элемента в списке (6 различных способов)
      • Python: Удаление дубликатов из списка (7 способов)
      • Python: Преобразование словаря в список кортежей (4 простых способа)
      • Python: Перемешать Список (Случайное Распределение Элементов Списка в Python)
      • Python: Пересечение двух списков
      • Python: Вычитание двух списков (4 простых способа!)
      • Длина или Размер Списка в Python: 5 Способов Узнать Длину Списка
      • Python: Транспонирование списка списков (5 простых способов!)
      • Python: Разделение списка (Пополам, на части)
      • Python: Комбинации списка (Получить все комбинации списка)
      • Python: Выравнивание списка списков (4 способа)
      • Разница между списками в Python: Нахождение разницы между двумя списками Python
      • Python: Найти среднее значение списка или списка списков
      • Как добавлять элементы в списки в Python – 4 простых способа!
      • Списковые включения в Python (Полное руководство с примерами)
      • 6 способов преобразовать список Python в строку
    • Python Dictionaries
      • Понимание словаря Python (с примерами)
      • Исправляем ValueError: Слишком Много Значений Для Распаковки в Python
      • Как добавить словарь в список в Python
      • Преобразование JSON в словарь Python
      • Полное руководство по вложенным словарям в Python
      • Копирование словаря в Python: Полное руководство
      • Конвертация списка словарей в Pandas DataFrame
      • Поиск дубликатов в списке Python
      • Полный обзор словарей в Python
      • Python: Добавление пары Ключ:Значение в Словарь
      • Python: Сортировка словаря по значениям
      • Слияние Словарей в Python – Комбинирование Словарей (7 Способов)
      • Python: Удаление Дубликатов из Списка (7 Способов)
      • Python: Преобразование словаря в список кортежей (4 простых способа)
      • Python: Красивая Печать Словаря (Dictionary) – 4 Способа
      • Python: Проверка пуст ли словарь (5 способов!)
      • Copy of Python: Проверка пуст ли словарь (5 способов!)
      • Python: Проверьте, существует ли ключ (или значение) в словаре (5 простых способов)
      • Python: Проверьте, существует ли ключ (или значение) в словаре (5 простых способов)
      • Python: Получение Ключа Словаря с Максимальным Значением (4 Способа)
      • Python: Удаление ключа из словаря (4 разных способа)
      • Как красиво вывести JSON-файл в Python (6 методов)
    • Python Strings
      • Python Капитализация Строк: Руководство по Преобразованию слов в Заглавные
      • Python strip: Как обрезать строку в Python
      • Python Обратная Строка: Руководство по Реверсированию Строк
      • Как Удалить Префикс или Суффикс из Строки в Python
      • Преобразование строки в формат заголовка в Python с помощью str.title()
      • Как добавить строку в список в Python
      • Python String startswith: Проверка, начинается ли строка с подстроки
      • Python String endswith: Проверка того, заканчивается ли строка подстрокой
      • Как удалить первый или последний символ из строки в Python
      • Как исправить: SyntaxError в Python - EOL при сканировании строкового литерала
      • Python String Contains: Проверка Наличия Подстроки в Строке
      • Как проверить, пустая ли строка в Python
      • Python Новая Строка и Как Печатать Без Переноса Строки
      • Как Конкатенировать Строки в Python: Полное Руководство
      • Python: Подсчет слов в строке или файле
      • Как создать список алфавита в Python
      • Python: Конкатенация строки и целого числа (Int)
      • Python: Сортировка строки (4 различных способа)
      • Python zfill и rjust: Добавление нулей в строку в Python
      • Python: Целое в Двоичное (Преобразование целого числа в двоичную строку)
      • Python rfind: Нахождение индекса последней подстроки в строке
      • Python SHA256 хеширование алгоритм: объяснение
      • Python: Усечение числа с плавающей точкой (6 различных способов)
      • Выбор между методами Python isdigit(), isnumeric() и isdecimal()
      • Python: Удаление специальных символов из строки
      • Python Приведение Строки к Нижнему Регистру с помощью .lower(), .casefold(), и .islower()
      • Python программа для проверки, является ли строка палиндромом (6 методов)
      • Python: Найдите все перестановки строки (3 легких способа!)
      • Python: Удаление пунктуации из строки (3 разных способа!)
      • Python: Найти индекс (или все индексы) подстроки в строке
      • Python: Удаление символов новой строки из строки
      • Python: Удаление символа из строки (4 способа)
      • Python: Количество вхождений в строке (4 способа!)
    • Встроенные функции Python
      • abs()
      • ascii()
      • aiter()
      • all()
      • any()
      • anext()
      • bin()
      • bool()
      • breakpoint()
      • bytearray()
      • bytes()
      • callable()
      • chr()
      • classmethod()
      • compile()
      • complex()
      • delattr()
      • dict()
      • dir()
      • divmod()
      • enumerate()
      • eval()
      • exec()
      • filter()
      • float()
      • format()
      • frozenset()
      • getattr()
      • globals()
      • hasattr()
      • hash()
      • help()
      • hex()
      • id()
      • input()
      • int()
      • issubclass()
      • iter()
      • len()
      • list()
      • locals()
      • map()
      • max()
      • memoryview()
      • min()
      • next()
      • object()
      • oct()
      • open()
      • ord()
      • pow()
      • print()
      • property()
      • range()
      • repr()
      • reversed()
      • round()
      • set()
      • setattr()
      • isinstance()
      • slice()
      • zip()
      • type()
      • sorted()
      • staticmethod()
      • str()
      • sum()
      • super()
      • tuple()
      • vars()
      • import()
    • Cобеседования Python. Разбор реальных вопросов.
    • Встроенные методы в Python
  • Учебники по Pandas и Numpy
    • Numpy
      • Функция активации ReLU для глубокого обучения: полное руководство по выпрямленному линейному блоку
      • Как нормализовать массивы NumPy (минимальное-максимальное масштабирование, Z-оценка, L2)
      • NumPy where: Условная обработка элементов массива
      • NumPy linspace: создание равномерно расположенных массивов с помощью np.linspace
      • Как рассчитать векторное произведение в Python
      • Разделение NumPy: Разделение массива NumPy на части
      • NumPy: Лучшие способы применения функции к массиву
      • NumPy full: Создание массивов с заданным значением
      • NumPy clip(): Ограничьте значения массива минимальным и максимальным значениями
      • NumPy cumsum: Расчет кумулятивных сумм массивов NumPy
      • Изучаем функцию np.histogram в NumPy: создаем гистограмму
      • NumPy arange(): Полное руководство (с примерами)
      • Руководство по индексации и срезам массивов NumPy: Полное руководство
      • NumPy argmin(): Получение индекса минимального значения в массивах
      • Выравнивание массива с помощью NumPy flatten
      • Объединение массивов NumPy по различным осям с использованием функции stack
      • Удаление размерности из массивов NumPy с помощью NumPy Squeeze
      • Функция np.repeat() NumPy: Повторение массивов NumPy
      • Использование функции NumPy.exp() для вычисления экспоненты
      • Реализация функции сигмоида на Python
      • NumPy Pad: Использование np.pad() для дополнения массивов и матриц
      • np.argmax(): Как использовать NumPy Argmax
      • NumPy logspace: Понимание функции np.logspace()
      • Использование NumPy Tile для Расположения Массивов
      • NumPy Zeros: Создание массивов и матриц с нулями в NumPy
      • Использование числа Пи в Python (NumPy и Math)
      • Распределение Нормального (Гауссова) Распределения в Numpy (Случайное Нормальное в Numpy)
      • NumPy для Data Science на Python
      • Расчет скалярного произведения с использованием Numpy в Python
      • Расчет натурального логарифма на Python
    • Pandas
      • Python сводные таблицы – Полное руководство
      • Изучение API стиля Pandas
      • Объяснение группировки по нескольким столбцам в Pandas с примерами
      • Удаление индексной колонки DataFrame в Pandas: Руководство с примерами
      • Pandas Quantile: Расчет процентилей в DataFrame
      • Как рассчитать скользящее среднее (среднее арифметическое) в Pandas
      • Руководство по использованию метода fillna в Pandas для работы с отсутствующими данными в DataFrame
      • Pandas unique(): Получение уникальных значений в DataFrame
      • Распакуйте Ваши Данные с Помощью Функции Melt в Pandas
      • Pandas date_range: Как Создать Диапазон Дат в Pandas
      • Сброс индекса в Pandas: как сбросить индекс в Pandas
      • Pandas replace() – Замена значений в DataFrame Pandas
      • Перемещение столбца DataFrame Pandas на позицию (В начало и в конец)
      • Учебное пособие по Python Pandas: полное руководство
      • Pandas: Замена NaN на нули
      • Преобразование DataFrame Pandas в файл Pickle
      • Конвертация Pandas DataFrame в JSON
      • Преобразование DataFrame Pandas в Словарь
      • Преобразование Pandas DataFrame в Список
      • Чтение файлов Parquet в Pandas с помощью pd.read_parquet
      • Pandas dropna(): Удаление отсутствующих записей и столбцов в DataFrame
      • Как Добавить Новый Столбец в DataFrame Pandas
      • Подсчёт уникальных значений в Pandas
      • Отображение всех столбцов и строк в DataFrame Pandas
      • Pandas to_excel: Запись DataFrames в файлы Excel
      • Как использовать Pandas для чтения файлов Excel в Python
      • Преобразование списка словарей в Pandas DataFrame
      • Как добавить/вставить строку в DataFrame Pandas
      • Диаграмма рассеяния в Pandas: Как создать диаграмму рассеяния в Pandas
      • Pandas to_datetime: Преобразование строки Pandas в дату и время
      • Введение в Pandas для Data Science
      • Индексация, Выборка и Присваивание Данных в Pandas
      • Суммирование и Анализ Pandas DataFrame
      • Преобразование столбцов Pandas с помощью map и apply
      • Группировка данных в Pandas с использованием cut и qcut
      • Дата и время в Pandas и Python
      • Очистка и подготовка данных в Pandas и Python
      • Pandas GroupBy: группировка, суммирование и агрегация данных в Python
      • Pandas Дата и Время в Части Даты (месяц, год и т.д.)
      • Pandas: Получение номера строки из DataFrame
      • Вычисление Взвешенного Среднего в Pandas и Python
      • Как перемешать строки Pandas Dataframe в Python
      • Pandas: количество столбцов (подсчет столбцов в DataFrame)
      • Pandas Sum: сложение столбцов и строк DataFrame
      • Pandas Diff: Вычисление Разницы Между Строками Pandas
      • Нормализация столбца или датафрейма Pandas (с использованием Pandas или sklearn)
      • Функция Rank в Pandas: Ранжирование данных в Dataframe (Эквивалент SQL row_number)
      • Pandas Describe: Описательная статистика вашего Dataframe
      • Pandas Shift: Перемещение столбца DataFrame вверх или вниз
      • 7 Способов Выполнения Выборки Данных в Pandas
      • Экспорт DataFrame Pandas в CSV файл – Использование .to_csv()
      • Pandas: Итерация по строкам DataFrame в Pandas
      • Pandas: Преобразование значений столбца в строки
      • Дисперсия в Pandas: Вычисление дисперсии столбца в Pandas Dataframe
      • Pandas: Создание DataFrame из списков (5 способов!)
      • Pandas Rename Index: Как переименовать индекс DataFrame в Pandas
      • Pandas: Подсчёт уникальных значений в объекте GroupBy
      • Pandas: Добавить дни к колонке с датами
      • Среднее в Pandas: Как рассчитать среднее для одной или нескольких колонок
      • Pandas Column to List – Конвертируйте колонку Pandas в список
  • Учебники Matplotlib и Seaborn
    • Seaborn
      • Регрессионные графики в Seaborn с использованием regplot и lmplot
      • Seaborn residplot – Построение остатков линейной регрессии
      • Seaborn jointplot() – Создание совместных графиков в Seaborn
      • Seaborn displot – Распределенческие графики в Python
      • Seaborn ecdfplot – Эмпирические функции накопленного распределения
      • Seaborn rugplot – Визуализация маргинальных распределений
      • Seaborn kdeplot – Создание графиков оценки плотности ядра
      • Seaborn histplot – Создание Гистограмм в Seaborn
      • Seaborn catplot – Визуализация категориальных данных в Python
      • Средняя тенденция для категориальных данных в Seaborn Pointplot
      • Seaborn stripplot: Jitter Plots для распределений категориальных данных
      • Seaborn Countplot – Подсчет категориальных данных в Python
      • Seaborn swarmplot: Bee Swarm Plots для распределения категориальных данных
      • Скрипичные графики Seaborn в Python: Полное руководство
      • Настройка расположения легенд Seaborn, меток, текста и т.д.
      • Тепловая карта Seaborn: Полное руководство
      • Создание многосекционных сеток в Seaborn с помощью FacetGrid
      • Удаление рамки в Seaborn: Как работать с рамкой
      • Заголовки и метки осей в Seaborn: добавление и настройка
      • Как установить Seaborn в Python (Исправление: no module named seaborn)
      • Seaborn relplot – Создание точечных и линейных графиков
    • Matplotlib
      • Режим Retina в Matplotlib: Улучшение Качества Графиков
      • Как построить функцию в Python с использованием Matplotlib
      • Как создать 3D-диаграммы рассеяния в Matplotlib
      • Как изменить размер шрифта в графике Matplotlib
      • Установка размера маркера в точечных диаграммах Matplotlib
      • Как изменить размер графика и фигуры в Matplotlib
      • Как добавить названия в Matplotlib: Заголовок, Подзаголовок, Названия Осей
      • Pandas Scatter Plot: Как создать диаграмму рассеяния в Pandas
      • Построение графиков в Python с помощью Matplotlib
      • Диаграммы рассеяния Matplotlib – Все, что вам нужно знать
      • Диаграммы с столбцами в Matplotlib – Узнайте все, что вам нужно знать
      • Линейные диаграммы Matplotlib – Всё, что вам нужно знать
      • Построение гистограммы в Python с Matplotlib и Pandas
  • Алгоритмы
    • Алгоритм поиска в ширину (BFS) в Python
    • Алгоритм поиска в глубину (DFS) на Python
  • AI создает хедж-фонд для анализа акций на Python
Powered by GitBook
On this page
  • Быстрый ответ: как использовать режим Retina
  • Понимание необходимости режима Retina в Matplotlib
  • Изменение разрешения (DPI) графиков Matplotlib
  • Использование режима Matplotlib Retina в ноутбуках Jupyter
  • Заключение
  1. Учебники Matplotlib и Seaborn
  2. Matplotlib

Режим Retina в Matplotlib: Улучшение Качества Графиков

PreviousMatplotlibNextКак построить функцию в Python с использованием Matplotlib

Last updated 1 year ago

Matplotlib является фактически стандартной библиотекой для визуализации данных в Python. Она предоставляет массу возможностей для создания красивых графиков и диаграмм, однако многие из этих потрясающих функций скрыты в сложной документации. В этом учебном пособии вы научитесь использовать функцию режима «retina», которая позволяет улучшить качество ваших графиков для дисплеев с высоким разрешением (или для печати).

Оглавление

Быстрый ответ: как использовать режим Retina

Как включить режим сетчатки в Matplotlib, чтобы увеличить разрешение моих графиков?

Чтобы включить режим Retina для Matplotlib, вы можете использовать либо plt.rcParams['figure.dpi'] = 200 для скриптов в режиме inline, либо включить режим Retina для блокнотов, используя `%config InlineBackend.figure_format = 'retina'

Понимание необходимости режима Retina в Matplotlib

в Python с использованием высоко настраиваемого синтаксиса. По умолчанию графики Matplotlib имеют разрешение 100,0 DPI. Это разрешение, будучи экономичным по памяти, не является очень четким.

Давайте сравним два графика, созданных с помощью Matplotlib:

  1. Без изменения разрешения (сохраняя значение по умолчанию 100,0 DPI)

  2. С увеличенным разрешением 200,0 DPI

Теперь, когда вы видели, насколько лучше выглядят графики в режиме ретины, давайте посмотрим, как мы можем это достичь.

Изменение разрешения (DPI) графиков Matplotlib

Matplotlib использует параметры rcParams для управления поведением и внешним видом графиков. rcParams означает «параметры конфигурации во время выполнения» в Matplotlib. Это объект, похожий на словарь, который хранит различные настройки конфигурации, управляющие поведением и внешним видом графиков и фигур в Matplotlib.

Давайте посмотрим, как мы можем использовать объект rcParams для изменения DPI нашего графика:

# Изменение разрешения графиков Matplotlib с помощью rcParams
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['figure.dpi'] = 200
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1)
plt.plot(x, y2)
plt.legend(['sin(x)', 'cos(x)'])
plt.title('График в режиме Retina')
plt.show()
import matplotlib.pyplot as plt
import numpy as np

plt.rcParams['figure.dpi'] = 200
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1)
plt.plot(x, y2)
plt.legend(['sin(x)', 'cos(x)'])
plt.title('График в режиме Retina')
plt.show()

В приведенном выше блоке кода мы использовали Matplotlib для построения функций синуса и косинуса. Однако сначала мы использовали rcParams, чтобы установить DPI изображения и установили его в значение 200. Также мы добавили легенду и заголовок. Когда мы показываем график, Python возвращает следующее изображение:

Теперь давайте рассмотрим, как использовать упрощенный режим ретины в Jupyter Notebook, если вы не хотите возиться с rcParams.

Использование режима Matplotlib Retina в ноутбуках Jupyter

Лично я считаю rcParams удобными, но в то же время капризными. Из-за этого, когда работаю с Jupyter notebooks, я предпочитаю использовать Matplotlib magic для режима retina. Магические команды Jupyter позволяют вам легко изменять поведение тетрадей и способ представления данных.

Давайте рассмотрим, как мы можем использовать магическую команду для переключения нашего режима в ретина:

# Использование магии Matplotlib в блокнотах Jupyter
import matplotlib.pyplot as plt
import numpy as np
%config InlineBackend.figure_format='retina'

x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

plt.plot(x, y1)
plt.plot(x, y2)
plt.legend(['sin(x)', 'cos(x)'])
plt.title('График в режиме Retina')

В приведенном выше блоке кода мы смогли использовать команды на обычном языке, чтобы изменить режим отображения на ретина. Хотя этот подход не так универсален, он может быть немного более интуитивно понятным.

Запуск этого кода возвращает следующее изображение:

Заключение

В заключение, Matplotlib является необходимой библиотекой визуализации данных в Python, которая предлагает широкий спектр вариантов для создания визуально привлекательных диаграмм и графиков. Однако стандартное разрешение графиков Matplotlib может не всегда обеспечивать желаемый уровень четкости. Чтобы решить эту проблему, мы рассмотрели концепцию Retina Mode в Matplotlib, которая позволяет нам улучшить качество графиков для экранов с более высоким разрешением или для печати. Увеличивая DPI (точек на дюйм) графиков, мы можем добиться более четких и детализированных визуализаций.

Мы научились изменять разрешение графиков Matplotlib с помощью объекта rcParams, который хранит различные настройки конфигурации для Matplotlib. Путем корректировки параметра figure.dpi, мы можем увеличить разрешение наших графиков и улучшить их визуальное качество.

Для пользователей, работающих с Jupyter notebooks, мы добавили использование магической команды %config InlineBackend.figure_format='retina'. Эта команда предоставляет более простой способ активации режима Retina непосредственно в Jupyter notebooks, без необходимости прямого изменения

Будь вы решите изменить разрешение с помощью rcParams или воспользуетесь магической командой в Jupyter notebooks, активация режима Retina в Matplotlib позволяет создавать визуально впечатляющие графики, оптимизированные для дисплеев высокого разрешения или для печати.

Объект rcParams позволяет вам изменять и настраивать настройки по умолчанию в Matplotlib в соответствии с вашими предпочтениями. Он включает в себя широкий спектр параметров, , DPI, стили линий, цвета, шрифты и многое другое.

таких как размер фигуры
Matplotlib упрощает создание графиков
Быстрый ответ: как использовать режим Retina
Понимание необходимости режима Retina в Matplotlib
Изменение разрешения (DPI) графиков Matplotlib
Использование режима Matplotlib Retina в ноутбуках Jupyter
Заключение
Изменение разрешения графиков Matplotlib с помощью rcParams
Использование магии Matplotlib в блокнотах Jupyter