Pytorch
import torch
import torch.nn as nn
import torch.optim as optim
# Создание нейронной сети
class NeuralNetwork(nn.Module):
def __init__(self):
super(NeuralNetwork, self).__init__()
self.fc1 = nn.Linear(784, 256)
self.fc2 = nn.Linear(256, 10)
def forward(self, x):
x = torch.flatten(x, 1)
x = torch.relu(self.fc1(x))
x = self.fc2(x)
return x
# Инициализация модели, функции потерь и оптимизатора
model = NeuralNetwork()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01)
# Обучение модели на тренировочных данных
for epoch in range(num_epochs):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = loss_function(outputs, labels)
loss.backward()
optimizer.step()
print(f'Epoch {epoch+1}/{num_epochs}, Loss: {loss.item()}')
# Оценка модели на тестовых данных
correct = 0
total = 0
with torch.no_grad():
for inputs, labels in test_loader:
outputs = model(inputs)
_, predicted = torch.max(outputs, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
accuracy = correct / total
print(f'Accuracy on test data: {accuracy}')Last updated